III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

PRODUCTION PLANNING AND CONTROL (MECHANICAL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries

14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Define PPC. Describe the importance of PPC in	L2	CO1	6 M				
		real life application.							
	b)	A company uses simple exponential smoothing	L3	CO3	8 M				
		with $\alpha=0.4$ to forecast demand. The forecast for							
		the first week of January was 600 units, whereas							
		actual turned out to be 450 units. (i) Forecast the							
		demand for the second week of January (ii)							
		Assume that the actual demand during the							
		second week of January turned out to be 650							
		units. Forecast the demand up to February third							
		week, assuming the subsequent demands as 575,							
		550, 570, 625, and 570 units.							
	OR								

2	a)	Explain the general principles of forecasting.L2CO16 M								
	b)	The demand for 10 weeks is given in the following L3 CO3 8 M								
		table. Calculate the four-month moving average.								
		Week 1 2 3 4 5 6 7 8 9 10								
		Orders 120 90 100 110 45 91 65 71 49 55								
UNIT-II										
3	a)	What is meant by VED analysis? What is its L2 CO1 6 M								
		significance?								
	b)	A company requires 10000 units of an item per L3 CO3 8 M								
		annum. The cost of ordering is Rs. 150 per order.								
		The inventory carrying cost is 30%. The unit price								
		of the item is Rs. 12. Calculate (i) The economic								
		order quantity (ii) Optimal total annual cost (iii)								
		Time between the orders.								
		OR								
4	a)	An electric housing has an annual usage rate of L3 CO3 8 M								
		75,000 units/year, an ordering cost Rs, 800 and								
		annual carrying charge of 15.4% of the unit price.								
		Delivery lead time is 2 weeks. Determine EOQ,								
		lead time consumption and the optimal operating								
		doctrine. (Assuming the cost of one unit is Rs. 12).								
	b)	Explain P and Q systems of controlling the L2 CO3 6 M								
		inventories with neat diagrams.								
		UNIT-III								
5	a)	UNIT-III Explain the bill of material with design L2 CO1 7 M								
5	a)									
5	a) b)	Explain the bill of material with design L2 CO1 7 M								
5		Explain the bill of material with design L2 CO1 7 M specification chart.								

OR								
6	a)	Compare and contrast different scheduling policies.	L2	CO1	7 M			
	b)	Explain the various types of graphs used in	L2	CO3	7 M			
		scheduling and control related problems.						
	•							
		UNIT-IV						
7	a)	Explain various strategies in aggregate planning.	L2	CO1	7 M			
	b)	What are the various costs in aggregate planning	L2	CO4	7 M			
		and explain?						
OR								
8	a)	What is the purpose of aggregate planning? Explain	L2	CO1	7 M			
		in detail?						
	b)	Explain the line balancing procedures.	L2	CO4	7 M			
UNIT-V								
9	a)	Explain the different types of follow ups.	L2	CO2	7 M			
	b)	Explain the applications of computer in production	L2	CO2	7 M			
		planning and control.						
	OR							
10	a)	Write the advantages and disadvantages of	L2	CO1	7 M			
		decentralized dispatching.						
	b)	Differentiate between centralized and decentralized	L2	CO2	7 M			
		dispatching procedures.						